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Abstract

This paper extends the work of Pauly (1973) by analysing the optimal
organization of an economy in which individuals experience spatially-
limited altruism. With such altruism, the nonpoor members of society care
more about the poor living near them than about those living farther away.
The main theme of the paper is that while the proximity of the poor gives
mixed communities an altruistic advantage over homogeneous communities, the
intermixing of rich and poor generates an efficiency loss in that public
consumption in mixed communities cannot be tailored to suit individual
preferences. As a result, a mixed community configuration (where income
redistribution proceeds through local transfers) may or may not be superior
to a homogeneous configuration (in which redistribution is conducted by the
federal government). In addition to analysing this altruism/efficiency
loss trade-off, the paper characterizes equilibrium outcomes when
communities are organized by competitive developers.





Spatial ly-Liai ted Altruisa, Nixed Clubs, and Local Income
Redistribution

by

Jan K. Brueckner and Kangoh Lee*

l.__ .Intrpduction

In an important paper, Pauly (1973) introduced the notion of

spatially-limited altruism into the formal public finance literature. With

this type of altruism, the rich care more about the poor living in their

own community than about those living farther away. Pauly used this

concept to argue that a policy of national income redistribution is

inefficient. The reason is that such a policy (in Pauly 's view) imposes a

uniform redistributive standard on dissimilar local jurisdictions, each of

which will have a different taste for redistribution when altruism is

spatially limited. 1 This argument challenged the standard orthodoxy, which

claimed that income redistribution is the responsibility of the national

government. a

The present paper addresses a more comprehensive question within

Pauly' s framework by analysing the optimal spatial organization of an

economy with spatially-limited altruism. Since he assumed a fixed

distribution of the population, this issue did not arise in Pauly'

s

analysis. The central question concerns the optimal spatial grouping of

the rich and poor: should the rich and poor live together in mixed

communities or should they live separately in homogeneous communities? The

answer to this question bears on the assignment of income redistribution

duties since redistribution can proceed through local transfers when
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communities are mixed while intercommunity transfers (and thus a national

redistribution program) are needed when communities are homogeneous.

Although a direct application of Pauly's model would suggest that

communities should be mixed so that the rich can experience altruism most

intensely, the issue is more complex in the present framework. This is a

consequence of the key additional assumption that individuals in the

economy consume local public goods, which was not present in Pauly's

analysis. Since public consumption in mixed communities cannot be tailored

to suit individual preferences, the altruistic benefits of mixed

communities are accompanied by an efficiency loss on the consumption side.

This loss is avoided in homogeneous communities but enjoyment of altruism

is sacrificed. The presence of this trade-off makes the optimal spatial

structure of the economy indeterminate in general . A major goal of the

analysis is to resolve this indeterminacy by identifying conditions under

which a mixed community configuration is optimal. The paper also analyses

equilibrium community configurations under the assumption that communities

are organized by competitive, profit-maximizing developers. It is shown

(subject to certain qualifications) that mixed communities emerge in

equilibrium whenever such a configuration is desirable from an efficiency

standpoint

.

The paper's lessons about the optimality of local redistribution are

somewhat different than in Pauly's analysis. Since the national government

can always duplicate local transfers, assignment of the redistributive

function to the national level is never inefficient. However,

institutional parsimony suggests that redistribution should be carried out

by local governments whenever this is feasible (that is, when the economy

is organized in identical mixed communities). It should be noted that had



Pauly considered the identical community case (which emerges when the

community structure is optimized), his indictment of national

redistribution would have been softened along the above lines.

The paper's analytical framework is based on the standard economic

model of clubs, as developed by Buchanan (1965), Berglas (1976b), and

Berglas and Pines (1981). 3 Although the connection to Pauly makes the

local redistribution question important, the paper's main contribution is

in fact to extend the theory of clubs by stating new conditions under which

mixed clubs are optimal. There has been considerable interest in this

issue in the literature. Berglas (1976a), for example, showed that mixing

is desirable when different types of people are complementary in

production. More recently, Berglas (1984) proved the less obvious result

that mixing may be optimal in the presence of multiple public goods. In

analysing spatially-limited altruism, this paper identifies a new force

favoring the formation of mixed clubs.

2 ,.„ Normative Analysis

The model has two types of individuals, a and b, with the a's feeling

altruism for the b's, as specified further below. The b's comprise a

fraction 8 of the economy's total population N, with the a's accounting for

1-9 of the total. Exogenous incomes for the two groups are I
a and I

b
.

Given the a's altruism, it is natural to suppose that the b's are

relatively poor (I b < I"), although this assumption plays no role in the

analysis. Consumption goods in the economy include a private good x and a

congested public good z. The cost in terms of x of providing public

consumption z to a community (hereafter "club") of n people is C(z,n). C

is increasing and convex in z, and congestion implies that the partial

derivative C„ is positive. A further assumption is that for any z > 0, per
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capita cost C(z,n)/n is a U-shaped function of n, which guarantees the

existence of a positive finite optimal club size.

The (well-behaved) type-a and type-b utility functions are U(x,z,k)

and V(x,z), where the k argument captures the altruism felt by the a's. A

fundamental assumption is that this altruism is spatially limited, which

means that an a-type cares more about the b's living in his own club than

those living in other clubs. Moreover, the possibility of joint

consumption of public goods means that k does not depend simply on the

post-transfer income of the b's (as in the usual formulation of altruism)

but instead reflects their achieved utility level. There are various ways

of modeling the spatially-limited utility interdependence implied by these

assumptions. One possibility would be to assume that k equals a weighted

sum of the utility levels of type-b consumers, with a higher weight applied

to b's in the home club of a representative a-type. To formalize this

notion, let the home club have population n and a type-b proportion of o,

so that it contains on b-types. Then k would equal [(a + 3)onvhomo + f3(6N

- an)V*w"y ], where vhom" is the type-b utility in the home club, vawsy is

the (average) type-b utility in other clubs, (3 > is a parameter measuring

"generalized" altruism (which is felt regardless of the location of the

b's), and a > is parameter measuring "local" altruism (which is felt only

toward b's in the same club). Recall from above that 9N equals the number

of b-types in the economy. While this is in some ways a natural

formulation, it has the peculiar implication that for a given uniform type-

b utility (vhom"=v*mw~y=constant ) , k is increasing in on, implying that an

a-type is happier in a club with a larger type-b population. This seems

inconsistent with typical behavior, under which the nonpoor care about the

welfare of the poor but do not wish to live surrounded by them. A



modification that addresses this objection would be to write the vHom<= term

above as [ag(on) + |3on]vhome\ where g is a function satisfying g(on) > 0,

g(0) = 0, and g'(0) > 0. This formulation allows k to rise initially with

the type-b population when vhon"s =v ,!'w~y
, but the possibility that g' could

turn negative means that further increases may ultimately depress k in a

realistic fashion. Since the appearance of the absolute population size on

in the g function is inconvenient in the later analysis, this function is

replaced by a function f(o) that depends only on the type-b proportion o.

This yields k = (af(o) + Bon)vhomo + (J(0N - on)v~way , where f satisfies

f(o) > 0, f(0) = 0, and f'(0) > 0. Again, f could turn negative as o

increases, expressing an aversion on the part of the a's to living in a

community with a high proportion of b's.

The normative problem is to characterize the Pareto-ef f icient club

configurations in the model. As will be seen below, three types of

configurations are potentially efficient. The first configuration, denoted

H, consists of homogeneous type-a and type-b clubs. The second

configuration contains only mixed clubs, each of which mirrors the overall

composition of the population (having a type-b proportion equal to 0).

This configuration is denoted CM, for "completely mixed." In the third

configuration, denoted PM for "partially mixed," mixed clubs coexist with

homogeneous clubs. As explained below, the choice between these three

configurations can be expressed in the form of a single nonlinear

programming problem. Before turning to this problem, however, it will be

useful to compare the features of the H and CM configurations. This

comparison will highlight the fundamental trade-off involved in the choice

between homogeneous and mixed clubs.
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Club conf iguations in model must satisfy the standard requirement of

horizontal equity (identical utilities for identical people). Moreover,

all clubs of a given type (mixed, homogeneous type-a, homogeneous type-b)

are constrained to be identical (configurations violating this requirement

are inefficient).* The first step in analysing the H configuration is to

note that since type-b utilities are uniform under the horizontal equity

requirement, the altruism expression k is evaluated with vhom<s=v ,mw~y=v.

Furthermore, since clubs are homogeneous, the type-b proportion o equals

zero in each club where the a-types live. Recalling that f(0) = 0, these

facts mean that the altruism argument under H satisfies k = (39Nv = 6v,

where v is the uniform type-b utility and 6 s (39N. A Pareto-ef f icient H

configuration then solves the following problem:

max U(x~h ,za ,6v)

s.t. V(xbh ,z b ) = v (1)

(l-e)Nx~h + 9Nxbh + [(l-9)N/nm ]C(z-,n-)

+ (9N/nb )C(z t> ,n b )
= (l-G)NI- + 9NI b

. (2)

Eq. (2) above is the resource constraint for an economy with homogeneous

clubs. The RHS is total income in the economy, and the first two terms on

the LHS give total consumption of the private good x (the h superscripts

indicate that the x values apply to homogeneous clubs). The remaining

terms give the cost of public good provision in all the economy's clubs.

Note that the number of clubs of each type equals group population [(1-9)N

for the a's, 9N for the b's] divided by the relevant club population (n~ or

n b ). As is standard in club theory, we ignore the fact that these

expressions need not be integer-valued (the problem is inconsequential if N
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is large relative to optimal club sizes). The necessary conditions for an

optimum in the above problem are the two constraints together with

naU z /Ux = c; (3)

nbVz /Vx = Cb (4)

C* = CVn 1
, i=a,b, (5)

where subscripts denote partial derivatives and where the i superscripts on

C and C„ indicate that the functions are evaluated at (z^n 1
), i=a,b. Eqs

.

(3) and (4) are the Samuelson conditions for the two types of clubs, and

(5) indicates that club populations are chosen to minimize the per capita

cost of (optimal) public consumption.

The key difference between the H and CM configurations is that,

because of the proximity of the b's, the a's enjoy greater altruistic

benefits than in the homogeneous clubs formed under H. This can be seen by

computing the value of k in mixed clubs. Since vhome,=v aw,!iy=v and f is now

evaluated at 9 rather than zero, k = [af(0) + p9n]v + p(9N - 9n)v = [af(9)

+ 6]v, which exceeds the previous value of 6v. A disadvantage of CM,

however, is that in contrast to the H configuration, the public good level

in its mixed clubs cannot be tailored to suit individual preferences.

Substituting the new value of k, a Pareto-ef f icient CM configuration solves

the following problem:

max U(x",z, [af (9) + 6]v)

s.t. V(xb ,z) = v (6)

(l-9)nx- + 9nxb + C(z,n) = (l-9)nl- + 9nl b
. (7)

Eq. (7) is the resource constraint for a representative club, with n giving

the club's population and z the common public good level consumed by its
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residents. The necessary conditions for an (interior) optimum are the two

constraints along with*3

(l-0)nUz /Ux + 8nVx /Vx = C* (8)

Cn = C/n. (9)

Eq. (8) is the Samuelson condition for the mixed club, which reflects the

compromise of tastes imposed by heterogeneity, and (9) is the per capita

cost-minimization condition. The number of clubs N/n need not be integer-

valued, but this problem is again ignored. -7

The key to comparing H and CM configurations for a common value of v

is to note that the CM constraint (7) is equivalent to the H constraint (2)

together with the side conditions

z a = zb , n~ = nb . (10)

These "mixing constraints," which are necessary for common type-a and type-

b consumption of public goods, reduce the size of the CM opportunity set

relative to that of the H problem. Ordinarily, this would lead to a lower

value of the objective function (type-a utility) under CM. However, since

the altruistic advantage of mixed clubs means that, for given values of the

choice variables, the CM objective function achieves a higher value than

the H function, the effect of the smaller CM opportunity set may be

reversed. Together, these considerations imply that the preferred

configuration in a choice between H and CM cannot be determined in general.

Intuitively, this indeterminacy arises because there is a trade-off

between the altruistic advantage of mixed clubs and the efficiency loss

resulting from common consumption of public goods by people of different

types. Clearly, this trade-off can be resolved in favor of mixed clubs if
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the altruistic advantage from mixing is sufficiently large or if the

efficiency loss from mixing is sufficiently small. The magnitude of the

altruistic advantage in the model is related to the size of the local

altruism parameter a, and it is easy to show that CM is superior to H

whenever a is sufficiently large. The efficiency loss from mixing can be

evaluated by focusing on the mixing constraints (10). If these constraints

are satisfied at the H solution, then the efficiency loss vanishes, and CM

is preferred to H. Whether the mixing constraints hold exactly or

approximately depends on preferences. If preferences for z and x are

sufficiently close, then the efficiencly loss from mixing will be small and

CM will be preferred to H, with H preferred otherwise. Rigorous versions

of the above claims will be provided below as part of the general analysis

of the choice between H, CM, and PM.

The choice between H and CM can be illustrated diagrammatically by

drawing utility possibility frontiers for the two configurations. For a

given configuration, the utility frontier shows the maximum achievable

type-a utility (denoted u) for each value of v. Examples of the H and CM

frontiers are illustrated in Figure 1. The presence of altruism means that

both frontiers may contain upward-sloping segments, indicating that both

utility levels can be raised simultaneously through appropriate

redistribution. This follows because the slopes of the H and CM frontiers

are 6UK - 91^/(1-9^ and [af(9) + 6]Uk - 9UX/(1-9)VX respectively, either

of which may be positive (the marginal utilities are evaluated, course at

the appropriate solution, H or CM). For later convenience, the H frontier

in Figure 1 is shown as downward sloping. 8

As noted in the introduction, an important difference between the H

and CM configurations is that the minimal institutional structure required
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to carry out income redistribution is different under the two regimes.

Under the H configuration, each b-type receives a transfer equal to x b +

C b/nb - I
b while each a-type provides a transfer equal to I" - (x~ + CVn")

(the signs of these transfers are in fact unrestricted). Since the

transfer payments cross club boundaries, it is clear that redistribution

must be carried out by the federal government under the H configuration.

Under the CM configuration, by contrast, each b-type receives a transfer of

xbh + C/n - I
b while each a-type provides a transfer of I™ - (xoh + C/n)

(this assumes that each person pays his share of public good costs).

Although these transfers could be carried out by the federal government,

the proximity of the a's and the b's means that this duty could just as

well be assigned to the local government. Since local governments must

exist in any case to provide the public good, this assignment is clearly

desirable when it is feasible. While local redistribution is therefore the

preferred system when the economy is organized in the CM configuration, an

economy that relies on local redistribution cannot attain the H

configuration. 9 For this reason, reliance on local redistribution can be

inefficient in a world with spatially-limited altruism, in contrast to

Pauly's finding.

With the above background, the programming approach to solving the

Pareto-optimality problem is easily understood. Feasible club

configurations in the general programming problem include H and CM as well

as the PM configuration discussed above, where mixed and homogeneous clubs

coexist. In this more complex setting, the horizontal equity requirement

means that members of each group must enjoy the same utility level

regardless of whether they live in a mixed or homogeneous club. In

addition, all clubs of a given type must be identical, as before. Letting
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Q denote the number of mixed clubs, o denote the type-b proportion in their

populations, and I = (1-0)1" + 9I b
, the general Pareto-optimality problem

can be written

max U(xa ,z, [af (o) + 6]v)

s.t. V(xb ,z) = v

U(x-,z,[af(o) + 6]v) = U(x-h ,z»,6v) (11)

V(x b ,z) = V(xbh ,z b ) (12)

Q[(l-o)nx" + onxb + C(z,n)]

+ [(1-9)N - Q(l-o)n][n»xab + C(z-,nn ) ]/n
a

+ [9N - Qon][nbxbh + C(z b ,nb )]/n b = NI

.

(13)

Note that (11) and (12) are the horizontal equity constraints and that

[(1-9)N - Q(l-o)n]/n" and [8N - Qon]/n b are the numbers of homogenous type-

a and type-b clubs (total group size minus the population in mixed clubs

divided by n 1
, i=a,b). 10 Implicit constraints in the problem are < o < 1

and < Q < min{ (l-9)N/(l-o)n, 9N/on}, with the last inequality saying that

mixed clubs cannot contain more than the total population of either group.

As before, the first-order conditions for choice of the x, z, and n

variables reduce to the mixed- and homogeneous-club Samuelson and per

capita cost-minimization conditions. The Q and o variables, however, are

of more central interest since they determine the nature of the optimal

club configuration. First, it is clear that the H configuration

corresponds to Q = 0, while the CM configuration results from setting o = 9

and Q = N/n. 11 A PM configuration emerges when Q is positive and o is

different from 9. The following key result limits the class of admissible

PM configurations:
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Proposition 1. In a unique optimal configuration, mixed clubs can
coexist with at most one type of homogeneous club (either a or b).

This result, which says that PM configurations can contain only one type of

homogeneous club, follows directly from the fact that the Lagrangean

expression L for the problem is linear in Q. This means that when the

optimum is unique, it will be a corner solution, with Q either equal to

zero or min{ ( l-8)N/( l-o)n, 0N/on} (alternatively, the optimal Q could be

indeterminate). Since at least one of the equalities (l-o)nQ = (1-0)N, onQ

= 0N must therefore hold when the optimal Q is positive (and unique), it

follows that the entire population of one or both groups fits into mixed

clubs, as claimed.

Further consideration of the Lagrangean 's Q-derivative (LQ ) gives

insight into the conditions under which the optimal configuration contains

mixed clubs. It is easily shown that LQ has the same sign as

(l-o)t(x-*1 + C-/n") - (x- + C/n)]

+ o[(x b* + C b /nb )
- (xb + C/n)]. (14)

Suppose that (14) evaluated at Q = is positive for some o. 12 Then,

starting from configuration containing only homogeneous clubs, formation of

mixed clubs is desirable since per capita consumption of resources can be

reduced (with utility held constant) by moving individuals out of

homogeneous clubs into a mixed club with the given o. To see this, note

that when (14) is positive, resource consumption by mixed-club residents,

which equals (l-o)nx" + onx b + C, is greater than their consumption in

homogeneous clubs, which equals (l-o)n(x"h + C*/n") + on(xbh + Cb /n b )

(dividing by n puts the comparison in per capita terms). If, on the other

hand, (14) evaluated at Q = is negative for all < o < 1, then



13

relocating homogeneous-club residents into any (equal-utility) mixed club

raises per capita consumption of resources. In this case, it is clear that

formation of mixed clubs is undesirable. This heuristic discussion

illustrates the general condition for choice of Q: given the linearity of

L in Q, the optimal Q is positive if (14) evaluated at Q = is positive

for some o, while the optimal Q is zero if (14) evaluated at Q = is

negative for all < o < l.
13

Since it may be shown that xbb + Cb /nb is less than or equal to xb +

C/n, the second term in (14) is always nonpositive. However, the analogous

comparison for the a's is indeterminate, which makes the first term in (14)

(and thus the entire expression) ambiguous in sign. The first fact is due

to the consumption inefficiency of mixed clubs, which means that resource

consumption by the b's must be at least as great as in a homogeneous club

offering the same utility. To see this formally, note that the

satisfaction of the type-b Samuelson and per capita cost-minimization

conditions guarantees that the b's in a homogeneous club achieve the

required utility level v with the lowest possible per capita consumption of

resources. Since type-b consumption in mixed clubs is determined by

different first-order conditions, it follows that xb + C/n is at least as

large as xbh + Cb/nb . While this effect is also present for the a's, the

countervailing altruistic advantage of mixed clubs means that the resources

required for the a's to achieve a given utility could be either higher or

lower than in a homogeneous club. Note that for formation of mixed clubs

to be (uniquely) optimal, the latter condition must hold, with x~b + C B/n"

> x" + C/n and type-a resource requirements lower in a mixed club.

Otherwise, (14) cannot be positive.
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Having analysed the general conditions under which mixed clubs are

optimal, the next question concerns the choice between CM and PM. To

address this question, start with the CM configuration, where Q = N/n and o

= 9, and consider the gains and losses from allowing o to deviate from 9.

First, some change in o will typically make each mixed club's population

makeup more advantageous from an altruistic point of view. Recalling that

local altruism depends on the type-b proportion through the function f , the

a's will gain from increasing (decreasing) the type-b proportion relative

to 9 as f'(9) is positive (negative). This altruistic gain has a cost,

however, in that the individuals displaced from the mixed club must be

guaranteed the same utility as those that remain. If the amount of extra

resources required to achieve this equality is less than the (appropriately

measured) altruistic gain, then some deviation of o away from 9 is

desirable.

To formalize these considerations, the appropriate o-derivative is

computed by substituting Q = min{ (l-9)N/( l-o)n, 9N/on} into the Lagrangean

expression and differentiating in the separate cases where o > 9 and o < 9.

The derivative in the first case, denoted L
|
o2. e . has the same sign as

aUK f ' (o)v/Ux - [(x-h + CVn-) - (x- + C/n)]/o(l-o) (15)

and the derivative in the second case, L
|
ose , has the same sign as

aU*f
'
(o)v/Ux + [(xbH + Cb /n b )

- (xb + C/n) ]/( l-o) 2
. (16)

Suppose that (15) evaluted at o = 9 is positive or that (16) evaluated at o

= 9 is negative (or both). Then there exist PM configurations close to CM

that yield higher values of the objective function than CM itself,

establishing that CM cannot be optimal. To relate this result to the
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previous intuitive discussion, note that the altruistic gain from

increasing o above 9 (which could be negative) is captured by the first

term in (15) while the resource cost discussed above is the second term.

The cost of displacing an a-type into a homogeneous club equals the

difference between per capita consumption of the a's in homogenous and

mixed clubs, and the factor l/o(l-o) apportions these costs among the a-

types remaining in the mixed club. 1 "* For (15) to be positive, indicating

that PM configurations with o slightly above 9 are preferable to CM, the

altruistic gain in the first term must exceed the displacement cost in the

second term. Similarly, for (16) to be negative (meaning that o's slightly

below 9 are preferred to 9), the altruistic gain from decreasing o (the

negative of the first term) must exceed the cost of displacing a b-type

into a homogeneous club (the second term).

In the remainder of this section of the paper, we will prove three

propositions that help identify the optimal club configuration under

various conditions. The first proposition, which is based on eqs . (15) and

(16), relates to the choice between CM and PM when H is not optimal. The

last two propositions, which are based on (14), relate to the choice

between H on the one hand and some mixed club configuration (CM or PM) on

the other. The first result is as follows:

Proposition 2 . Suppose that a > and that f'(o) < holds for all o
> 9. Then, if the optimal configuration contains mixed clubs, it

must be a PM configuration with o < 9.

To prove this result, note first that since x toh + Cb /nb < xb + C/n from

above, the cost of displacing a b-type into a homogeneous club is always

nonpositive. Given that f'(9) is negative by assumption, it then follows

that (16) is negative at o = 9, so that there exist PM configurations with
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o < that are superior to CM. Intuitively, when f'(0) < 0, there are both

resource savings and altruistic gains from relocating b-types into

homogeneous clubs, making PM configurations with o less than (but close to)

superior to CM. To show further that no PM configuration with o > can

be optimal under the given assumptions, note first that (15) must equal

zero at a PM optimum with a > 0. Next, recall from above that the first

term in (14) (and hence the second term in (15)) must be positive at a

mixed-club optimum (this is required to make (14) positive). But this fact,

combined with the assumption that f < holds for o > 0, means that (15)

is negative at any supposedly optimal PM configuration with o > 0. This

contradiction establishes that such a configuration cannot be optimal.

It should be realized that when the conditions of Proposition 2 are

not satisfied, little can be said about the location of a mixed club

optimum. To see this, note that when f'(0) > 0, both (15) and (16)

evaluated at o = are ambiguous in sign, so that CM is not clearly

inferior to some PM configuration. However, even when these expressions

are respectively negative and positive (indicating that small deviations of

o away from are undesirable), a PM optimum is not ruled out. The reason

is that L00 is of ambiguous sign on both sides of 0, which means that the

objective function could reach higher values when o is far from even

though PM configurations close to CM are inferior to CM. Finally, although

the relevant derivative ((15) or (16)) must be zero at the o associated

with a PM optimum, the ambiguity of L00 means that the derivative could

also be zero at nonoptimal values of o.

The remaining propositions of this section show how the choice

between H on the one hand and CM or PM on the other depends on the

magnitude of a and the dispersion of preferences. Recall that the earlier



17

discussion claimed that CM is preferred to H when the altruistic gain from

mixing (as measured by the size of a) is sufficiently large. The following

proposition provides a more comprehensive result for the general choice

problem:

Proposition 3. For each type-b utility level v, there exists a

critical value of a, denoted a*(v) > 0, such that H is optimal when a

< a*(v) and either CM or PM is optimal when a > a*(v). If the mixing
constraints (10) hold under H, then a*(v) = 0. Otherwise, a*(v) > 0.

The first step in proving this proposition is to establish that when local

altruism is absent (a = 0), the LQ expression (14) evaluated at Q =

(denoted F hereafter) satisfies F < for all o between zero and one. 15 To

see this, note that when a = 0, there is no countervailing force to offset

the efficiency loss of mixed clubs from the perspective of the a's. From

the above discussion, this implies that x 1 + C/n > x ±H + CVn 1 holds for i

= a.b, yielding F < 0. More precisely, it can be shown that F = holds

when a = and the mixing constraints (10) are satisfied under H and that F

< holds when a = and these constraints are not satisfied. The first

claim follows from the fact that the equalities x 1* = x"h , xb = xbh , z = z"

= z b , and n = n" = nb hold when (10) is satisfied. To see this fact, note

that since the homogeneous-club Samuelson conditions imply the mixed-club

Samuelson condition (multiply (3) and (4) by (l-o) and o respectively and

add), the mixed-club condition holds at the common homogeneous-club

solution values. Since (5) and (9) are the same and utility levels must be

equal between mixed and homogeneous clubs, it follows that x**
h

, xbh , and

the common homogeneous-club z and n values satisfy the mixed-club

conditions, implying that the two solutions are identical and thus that F =

0. In the alternate case where the mixing constraints do not hold, the
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efficiency loss from mixing reasserts itself and it follows that resource

requirements are higher in mixed than in homogeneous clubs, implying F < 0.

The next step in the proof of Proposition 3 is to note that the

derivative of F with respect to a, denoted Fa , is positive for any o

between zero and one (this fact is established in the appendix). Since it

has been shown that F = when a = and the mixing constraints are

satisfied, positivity of Fa then means that F > holds for all positive a

in this case. This proves that CM or PM is optimal for all a > when the

mixing constraints are satisfied (implying that the critical value a*(v)

equals zero). When the mixing constraints are not satisfied, F < holds

for any o when a = 0, and since Fo, > 0, there exists a critical a value

a**(o,v) > that depends on o and v such that F is negative (positive) for

a less than (greater than) a**(o,v). It then follows that H is optimal

when a < inf {a**(o,v) | < o < 1} since a will then be small enough to make

F negative regardless of the value of o (recall that this is required for H

to be optimal). When a > inf {a** (o, v) | < o < 1}, on the other hand, F >

will hold for some o, and CM or PM will be optimal. Setting a*(v) =

inf {a**(o, v) | < o < 1} establishes the proposition.

An implication of Proposition 3 is that CM or PM is optimal if the

mixing constraints are satisfied. Although it is possible to construct

pathological examples where (10) holds under H, this outcome arises

naturally when preferences for x and z are the same. Suppose, for example,

that U(x,z,k) s V(x,z) + W(k) , so that k enters the type-a utility function

in an additively separable manner and the (x,z) portion of the function is

identical to the type-b utility function. Then it is easy to see that the

mixing constraints hold under H when income is redistributed so as to

achieve identical- post-transfer incomes (equal to (1-6) I« + 6I b ) for the
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two groups. For the v value corresponding to this post-transfer income, CM

or PM will be optimal. Suppose further that U satisfies the above

assumptions and in addition utility is transferable, with V(x,z) = x +

S(z), where S' > and S" < 0. Then, since conditions (3)-(5) do not

involve x, they yield the same common (z,n) solution for all values of v.

As a result, (10) holds and CM or PM is optimal for all v in this case.

While the absence of an efficiency loss from mixing makes some type

of mixed-club configuration optimal, it is intuitively clear that a

sufficiently small efficiency loss will lead to the same result. Moroever,

as noted above, the size of the loss is related to the divergence in

preferences between the a's and the b's. If preferences are "similar,"

then the efficiency loss will be small, while if preferences are quite

dissimilar, then the loss will be large. The following result draws a

precise connection between the extent of divergence in preferences and the

identity of the optimal configuration in the transferable utility case:

Proposition 4. Suppose that U(x,z,k) = x + flS(z) + W(k) and V(x,z) =

x + S(zj, with S' > 0, S" < 0, and fl > 0. Then when a > 0, there
exist numbers flj.*(v) > 1 and < fl 2 *(v) < 1 such that CM or PM is

optimal at a given v when fl satisfies a *(v) < A < A a *(v) and H is

optimal when fl > fli*(v) or fl < fl 2 *(v).

This result says that when preferences are sufficiently close in the

transferable utility case, CM or PM is optimal (with H optimal otherwise).

The first step in proving the proposition is to note from above that when fl

= 1, preferences are identical and the mixing constraints are satisfied for

all v under H. From above, this implies that F > (making CM or PM

optimal). The next step is to note that Fn > holds when fl < 1 and that

Fn < holds when > 1 (this is shown in the appendix). These facts imply

that for given v and o, there exists a critical fl value fl 1 **(o,v) > 1 such
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that F is greater than (less than) zero when fi is greater than one but less

than (greater than) Q 1 **(a ,w) . Similarly, if F < holds for 0=0, then

there exists a positive critical Q value Q a **(o,v) < 1 below which F

changes sign from positive to negative. If F > at Q = 0, then a positive

critical value does not exist and fl a **(o,v) is set equal to zero.

Recalling that CM or PM is optimal if F is positive for some o, it follows

that CM or PM is optimal when Q satisfies inf {Q 2 **(o, v) | 0<o<l}<fl<

sup{Q 1 **(o, v) j < o < 1} since will then lie in the range where F is

positive for some o. Conversely, when fl > sup{n i **(o, v) | < o < 1} or fi <

inf (Q 2 **(o, v) | < o < 1}, F is negative for all o and H is optimal (note

that if Q z **(o,v) = for all o, then H is never optimal for Q < 1).

Setting Qi*(v) = sup{0 1 **(o, v) | < o < 1 } and Q 2 *(v) = inf {Q a **(o, v) | <

o < 1} establishes the propostion.

Note that by combining Propositions 2-4, sufficient conditions for

the optimality of PM can be stated. Clearly, when f'(o) < for o > 8 and

a > a*(v), then PM is optimal at the given v. If in the transferable

utility case, f < again holds for o > 8 and fl a *(v) < Q < fii*(v), then PM

is once again optimal. It should be noted that since simple sufficient

conditions for CM to dominate PM are not available, it is not possible to

state simple conditions under which CM is optimal.

The general choice problem can be illustrated diagrammatically by

drawing a utility frontier based on the solution to the general programming

problem. When either H or CM is optimal at a given v, the general frontier

coincides with either the H or CM frontier of Figure 1 at that v. If,

however, PM is optimal, then the general frontier passes above both the H

and CM frontiers at the given v.
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A final point concerns the assignment of income redistribution

responsibilities in the general model. While it was pointed out above that

local governments should handle income redistribution under the CM

configuration, this assignment is not generally feasible under the PM

configuration since interclub transfers will typically be required.

Therefore, even though mixed clubs exist under PM, a federal redistribution

system must exist to support such a configuration.

3... Positive .Analysis

The key feature of standard models of altruism is that through the

voluntary action of individuals in the economy, the utility of the poor

group is raised above the level corresponding to the original distribution

of income. The purpose of the positive analysis in this section of the

paper is to see whether this outcome obtains in the present model. The

goal is to determine the level of v that actually emerges as a result of

decentralized behavior (v, of course, was parametric in the planning

problem) . The analysis is carried out under the assumption that clubs are

organized by competitive developers, as in Berglas (1976b) and Berglas and

Pines (1980, 1981). A key feature of the competitive model is that

developers, being small operators, are not able to make interclub

transfers. This means that PM configurations and all H configurations

except one are not attainable in the model. The only feasible

configurations are the CM configuration and the H configuration based on

the original distribution of income, neither of which involves interclub

transfers. The unattainability of some club configurations means that

equilibrium in the model may not be efficient. To reduce the likelihood of

this outcome, one possible source of inefficiency is removed by the

assumption that generalized altruism is absent (6 = 0), which means that
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the H frontier in Figure 1 is always downward sloping. This rules out a

situation in which the one attainable H configuration, denoted NR for "no

redistribution", is automatically Pareto-inef f icient as a result of being

dominated by one of the unattainable configurations on the H frontier (this

configuration is shown in Figure 1).

A critical additional assumption is that in forming mixed clubs,

developers are required (by law, perhaps) to mix the a's and the b's in

accordance with the overall composition of the population, forming clubs

with type-b proportions o equal to 8. This requirement will be referred to

as the "club composition constraint." As will be seen below, equilibrium

may not exist when developers are allowed to choose o. In order to satisfy

this requirement, as well as to carry out some of the actions described

below, developers must obviously be able to identify individuals by type.

The analysis first derives the features of the homogenous and mixed

clubs organized by developers. The discussion then identifies the club

structure (homogeneous or mixed) that actually emerges in equilibrium.

Consider the problem faced by a developer organizing a homogeneous type-a

club (an exactly parallel argument applies to the formation of type-b

clubs). The developer charges a club entry fee denoted by P~ while

choosing the public good level in the club and the size of its population.

Suppose the developer wishes to guarantee his club members a utility level

equal to u. Recalling that 6=0 and that homogeneous clubs must reflect

the original distribution of income, P" must then satisfy U( I"-P", z", 0) =

u. This equation implicitly defines P" as a function of z a and u. with

P* = U,/Ux and P" = -1/U^ < 0. The developer's profit can then be

written
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rr
a = naPa (z",u) - C(za ,na ). (27)

For given u, the developer chooses za and na to maximize (17), with the

first-order conditions being the Samuelson condition (3) and P"1 - C£ = .

The realized profit level depends on the parametric utility u. It is easy

to see that when u assumes the value corresponding to the NR point in

Figure 1, profit equals zero. Since Pa (and hence rc
a

) is decreasing in u,

profit is then positive (negative) for u below (above) the NR value. To

see the first claim, note that when rc
n = 0, the condition P" - C~ =

reduces to the per capita cost-minimization condition (5). Since the

Samuelson condition also holds and since the zero profit condition together

with the budget constraint xa + P~ = I* implies satisfaction of the club

resource constraint n"*x™ + Ca = n"I", it follows that the planning

conditions and club equilibrium conditions are identical. This means that

the zero-profit u is the same as the u value achieved at the no-

redistribution point in the planning problem, as claimed.

Now consider the problem of the mixed-club developer, who provides a

common level of the public good to both the a's and the b's. While the a's

may voluntarily enter a mixed club to benefit from the presence of the b's,

the b's themselves have no such incentive and will require compensation in

the form of a transfer payment to join a mixed club. The transfer T is

provided by the developer, who collects the necessary funds from the a's.

While the two groups pay a common club entry fee P, the presence of the

transfer makes their net costs of joining the club different.

To guarantee utilities of u and v to the type-a and type-b members of

his club, the developer must choose P and T to satisfy the following

conditions:



24

U(I--P-8T/(l-9) .z.af (8)v) » u (18)

V(I b-P+T,z) = v. (19)

Note in (18) that the per capita tax on the a's depends on the type-b

proportion, which is set at 9 to satisfy the club composition constraint. 16

Total differentiation of (18) and (19) shows that P z = (1-9)U*/UX + QV=/VX

and that P is decreasing in u. 17 As before, the developer chooses z and n

to maximize

it = nP(z.u.v) - C(z,n)
, (20)

with first-order conditions being the Samuelson condition (8) and P - C„ =

0. The realized profit level again depends on the parametric utilities u

and v. It is easily seen that for given v, profit is zero when u equals

the value on the CM frontier at that v. Profit is positive (negative) when

u is below (above) the CM-frontier value. As before, the first claim

follows because when k = 0, the condition P - C„ = reduces to the per

capita cost-minimization condition (9) and the type-a and type-b budget

constraints imply satisfaction of the club resource constraint. This means

that for given v, the zero profit u is the same as the one achieved in the

planning problem.

Having looked separately at homogeneous and mixed clubs, it is now

possible to analyse the club structure that emerges in equilibrium. A club

configuration will be an equilibrium in the model if its associated utility

pair (uB ,vE ) has the following properties: i) club developers earn

nonegative profit in the given configuration; ii) any type-a homogeneous

club offering u > uc earns negative profit; iii) any type-b homogeneous

club offering v > vE earns negative profit; iv) any mixed club offering

utilities (u,v) such that u > uE and v > vE and at least one inequality
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holds strictly earns negative profit; V) the given club configuration

accommodates the economy's population. In other words, an equilibrium club

configuration must house the economy's population and there must exist no

alternative clubs that are viable (that can attract residents by offering

utilities higher than those enjoyed in the given configuration) and

profitable (earning at least a zero profit for the developer). With this

definition 18 in mind, the following result can be established:

Proposition .5. Assume that generalized altruism is absent and that
clubs are organized by competitive developers who are subject to the
club composition constraint, as described above. If there are no

points on the CM frontier satisfying u > uNR and v > vNR , where uNR
and vNR are the utility levels at point NR on the H frontier, then
the equilibrium club configuration is the homogeneous configuration
corresponding to NR . If the CM frontier contains points satisfying u

> uNR and v > vNR , with at least one equality holding strictly, then
the set of equilibria consists of all points on the CM frontier
satisfying u > uNR and v > vNR and not Pareto-dominated by some other
point

.

The first step in proving this result is to establish that an equilibrium

configuration cannot contain a homogeneous club offering a utility

different from the NR level or a mixed club offering a utility pair not on

the CM frontier. To see the first claim, recall that a homogeneous club

offering a utility level above the NR level earns a negative profit. While

a homogeneous type-a club offering u = u' < uNR earns a positive profit,

such a club also cannot exist in equilibrium because there is an

alternative homogeneous club offering u = u' + t < uNR (with x > 0) that is

both viable and profitable (the same argument applies to type-b clubs).

The second claim is proved similarly. Mixed clubs offering utility pairs

above the CM frontier earn negative profits, while a mixed club offering a

utility pair (u",v") below the CM frontier is ruled out because an
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alternative mixed club offering a utility pair (u" + :',v") below the CM

frontier but with t' > is both viable and profitable.

With the class of candidates for equilibrium thus narrowed, consider

the first case in the proposition, where no points on the CM frontier

satisfy u > uNF, and v > vNR . In this case, any mixed club that is a

candidate for equilibrium must yield a utility level lower than the NR

level for at least one group. Suppose that such a club has type-a utility

equal to u' < uNR . Since a homogeneous type-a club offering a utility u"

between u' and uNR would attract away the a's and earn its developer a

positive profit, it follows that the given mixed club cannot exist in

equilibrium. With an equilibrium mixed club configuration ruled out by

this argument, it remains to show that the homogeneous club configuration

corresponding to NR satisfies the requirements of equilibrium in that

viable and profitable alternative clubs do not exist. First, any viable

alternative homogeneous club is unprofitable since it must offer a utility

higher than the NR level to one group. Second, any viable alternative

mixed club is also unprofitable since such a club must also improve on the

NR utilities and thus must lie above the CM frontier. These observations

complete the proof of the first half of the proposition. 19

Now suppose that the CM frontier contains points satisfying u > uNR

and v > vNR , with at least one equality holding strictly. In this case,

the argument used above to rule out mixed clubs shows that all CM poirtts

with at least one utility less than the NR level are not equilibria (viable

and profitable alternative homogeneous clubs exist). Furthermore, the

homogeneous NR configuration cannot be an equilibrium because there exist

viable alternative mixed clubs earning at least a zero profit. This leaves

points on the CM frontier satisfying u > uNR and v > vNR as candidates for
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equilibria. Suppose one of these points with coordinates (u',v') is

Pareto-dominated by another such point with coordinates (u",v"), a

possiblity given that the CM frontier may contain upward-sloping segments.

In this case, (u'.v 1

) cannot be an equilibrium because an alternative mixed

club offering v = v" and a u slightly less than u" would be viable and

profitable. The remaining undominated points, however, satisfy the

requirements of equilibrium. First, since any viable alternative

homogeneous club must offer its group a utility above the NR level, such a

club will lose money. In addition, since each equilibrium candidate is

Pareto-undominated, any viable alternative mixed club must lie above the CM

frontier (and thus must be unprofitable). This completes the proof of the

second half of the proposition.

Note that, for simplicity, Proposition 5 does not cover the case

where the CM frontier crosses the H frontier at NR without passing to the

northeast of NR. In this case, it is easy to see that the CM and H

configurations corresponding to NR are both equilibria. The second part of

Proposition 5 is illustrated in Figure 1, where the CM frontier is shown

passing to the northeast of NR. The Pareto-undominated CM points in this

range, which comprise the set of equilibria, are contained in the segment

JG of the frontier.

This analysis shows that when CM configurations exist that are

Pareto-superior to the status-quo point NR, decentralized behavior drives

the economy to one of these configurations. Since it is easily seen that

the transfer T received by the b's is positive in any such equilibrium, the

outcome is identical to that in a standard altruism model, where one group

voluntarily relinquishes income to help the other. 20
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If CM is always preferred to PM, then equilibrium in the model is

efficient in that no alternative club configuration is Pareto-superior to

any equilibrium configuration (this is clear from Figure 1). However, if

PM is sometimes superior to CM, then the general utility frontier will

sometimes lie above the CM frontier. In this case, both the mixed- and

homogeneous-club equilibria of the model may be inefficient (the general

frontier could pass above either type of equilibrium point). This

potential inefficiency is a consequence of the inability of competitive

developers to make interclub transfers.

A difficulty with the conclusions of this analysis is that they

depend critically on the presence of the club composition constraint, which

might be viewed as an unrealistic requirement in a decentralized economy.

Without this constraint, o becomes a choice variable of the developer. The

entry fee P now explicitly includes o as an argument, and profit

maximization requires nP = 0. This condition reduces to

(l-o) 2U 1<af ' (o)v/Ux - T = 0. (21)

Unless (21) holds at o = 9 , the previous mixed-club equilibria lose their

equilibrium status since developers can find profitable and viable

alternative clubs with o's different from 9. Under these circumstances, it

can be shown that equilibrium may fail to exist, a fact which highlights

the critical role of the club composition constraint. 21

As a final point, it is interesting to ask how the economy would be

organized if the a-types could specify the club configuration. Under such

an arrangement, the goal of the a's would be to maximize their own utility

subject to the constraint that the b's are willing to participate in the

chosen configuration. Formally, this problem amounts to finding the point
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on the general utility frontier that maximizes u subject to the requirement

that v exceeds or equals vNR . Unless this latter constraint is satisfied,

the b's will decline to participate in the chosen configuration, retreating

instead to homogeneous clubs based on the original distribution of income.

A difficulty with this choice process, however, is that cannot be viewed as

decentralized.

4. Conclusion

This paper has analysed optimal club configurations in a model with

spatially-limited altruism and has generated a number of results that are

new to club theory. The paper has also exposed the trade-off that must be

confronted in a evaluating a policy of local income redistribution. This

is an important contribution because local redistribution is practiced in

the U.S. on a variety of different levels. For example, unequal sharing of

the costs of running school districts and providing other public services

leads to extensive implicit redistribution among households at the

community level. Moreover, the fact that state contributions to federal

welfare programs are substantial and not at all uniform shows that the

welfare system involves an important element of local redistribution.

What can be said about such policies on the basis of the discussion

in this paper? The main practical lesson of the paper is that while local

redistribution may be consistent with efficiency in the presence of

spatially-limited altruism, the pursuit of such policies could involve a

substantial welfare cost. Since there is no reason to think that real

world economy mimics the developer model in avoiding undesirable

equilibria, the economy could conceivably benefit from homogenization of

communities and reassignment of the redistributive function to higher

levels of government. While such a conclusion follows from the model, it
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cannot be taken literally as a policy prescription. The main reason is

that complementarities in production (as in Berglas (1976a)) are probably

important enough in the real world to invalidate any call for community

homogenization based on public-sector considerations. In spite of this,

awareness of the potential welfare loss from pursuit of local

redistribution can only be beneficial in the analysis of policy questions

related to fiscal federalism.
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Appendix

This appendix first establishes the fact that Fa > 0, which was used

in the proof of Proposition 3. Differentiating (14), Fa equals

(l-o){[xSh + (C;/n-)zS] - [x; + (C z /n)za ]} (Al)

+ o{[x£h + (C£/nb )z5] - [x5 + (C./nJz,,],

where the a subscripts denote partial derivatives. This expression can be

simplified by differentiating the utility constraint (1) and using (4),

which shows that the first term following o in the second line equals zero.

Furthermore, differentiating (12) yields x£ = -(Vx /Vx )z a and

differentiating (11) yields

XS = (U£/Ux )[xSh + (U5/U£)z£] - (U lc/U Jl )f(o)v

- (lWUx )za , (A2)

where the h subscripts on U^ and Ux indicate that these derivatives apply

to homogeneous clubs. Substituting these expressions in (Al) and using the

mixed-club Samuelson condition ((8) with o replacing 0), all the terms

involving za drop out and (Al) reduces to an expression with the same sign

as

[(U„/U5) - l](U£xSh + U5zS) + URf(o)v. (A3)

The term in parentheses in the middle of (A3) is the change in utility in a

homogeneous club resulting from a change in a, which must equal the change

in utility in a mixed club by (11). But by the envelope theorem, the

change in utility in a mixed club is just the partial derivative of the

Lagrangean expression with respect to a, or (1 + p)Uicf(o)v, where u is the

multiplier associated with (11). Substituting this expression in place of
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the middle terra in (A3) and simplifying, (A3) reduces to an expresssion

with the sign of (1 + u)Ux/U£ - u. Since it is easily seen from the

first-order conditions for x a and xah that -1 < u < 0, it follows that this

expression is positive, establishing Fa > 0.

Our next task is to establish the fact that F n > (<) as (1 < (>) 1,

which was used in the proof of Proposition 4. The first step is to

differentiate (14) with respect to fl, which leads to the expression (Al)

with Q replacing a. Differentiating (11) and (12) with respect to fi under

transferable utility, substituting, and using the Samuelson condition, the

modified (Al) reduces to (l-o)[S(z) - S(z")]. Again using the Samuelson

condition, it is easy to see that z > (<) z" holds as fi < (>) 1 (the mixed-

club z is greater than (less than) the type-a value when the type-a demand

for z is lower (higher) than the type-b demand). Using this fact to sign

the above expression gives the desired result.
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Footnotes

Professor of Economics and Ph.D. candidate in Economics respectively.

We are indebted to Lanny Arvan for extremely helpful comments on an

earlier version of this paper. David Pines also provided some useful

criticism. Any errors or shortcomings are, of course, our

responsibility.

1 Pauly's conclusion is in fact too strong in that national redistribution

is possibly though not necessarily inefficient. While it is true that a

uniform standard makes a national policy more restrictive than local

policies, transfers that are feasible under a national program are not

always feasible under local redistribution. National redistribution in

Pauly's model is therefore inferior to local redistribution on one count

but superior on another, making the preferred policy indeterminate.

zSee Oates (1972) for a statement of the standard position. More
recently, Oates analysed equilibrium outcomes in a model similar to

Pauly's (see Brown and Oates (1987)).

3Brueckner (1988) used a similar approach to analyse local redistribution
in the absence of altruism.

4See Berglas and Pines (1981) and Berglas (1984).

°Recall that a previous assumption on C guarantees an interior solution
to (5).

e In a mixed-club problem without altruism, Brueckner (1988) shows that x a

= must hold in the upper range of possible v values, with xb =

holding in the lower range of v values. The present problem exhibits a

similar outcome, with nonnegativity constraints on x a binding for large
values of v. It is also possible that x b may be zero at the CM
solution, although the presence of altruism precludes any definite
statement. While the Samuelson condition (8) is altered when
nonnegativity constraints are binding, this has no effect on any of the
results derived below.

7 It should be noted that in contrast to Pauly's characterization of
Pareto-ef f iciency , the welfare of both the rich and the poor is taken
into account in the above discussion (Pauly's Pareto-optimum was defined
relative to the nonpoor members of the club)

.

sSince it can be shown that the feasible v's under CM are a subset of the
feasible v's under H, the endpoints of the CM frontier lie inside those
of the H frontier.

"A single member of the family of H configurations (that based on the
original distribution of income) is in fact attainable.

°The integer problem is again ignored.
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*Mt should be noted that the optimization problem may look ill-defined

when Q = since the objective function applies to a mixed club.

However, the multiplier for constraint (11) assumes the value -1 when Q
= 0, so that the U function for mixed clubs drops out of the problem and

the first-order conditions reduce to those for the H problem considered
earlier.

12 It should be noted that when Q = 0, the x 1
, z, and n variables in the

mixed club are in fact undetermined. This problem is handled by setting
these variables at Q = equal to their limits as Q approaches zero.

Note that the disappearance of mixed clubs means that the multipliers
associated with constraints (11) and (12) equal zero when Q = 0.

13Note that when (14) is nonnegative for all o and zero for some o, then

mixed clubs with the given o can be formed with no gain or loss of

resources. In this case, the optimal club configuration is

indeterminate, with any combination of mixed and homogeneous clubs being
optimal

.

14To see this, consider the case where o > 9. Letting D denote the cost of

displacing one a-type, total displacement cost equals D times the number
of a's outside mixed clubs, which is (1-9)N - 9N(l-o)/o. To find the

displacement cost per a-type remaining in mixed clubs, this must be

divided by 9N(l-o)/o, which yields D(o-9)/9( l-o) . The derivative of

this expression with respect to o (with D held fixed) evaluated at o = 9

is the second term in (15). A similar argument applies to (16).

xoThis fact about (14), as well those derived below, does not depend on the

Q value at which the expression is evaluated.

iaNote that T is in fact unrestricted in sign. Also, note that the
developer does not retain any of the taxes he collects from the a's for

himself. The developer could in fact reduce the transfer paid to the

b's to eT, with e < 1, earning an additional 9n(l-e)T in profit.
However, it can be shown that the profit maximizing value of e is unity.

1TT, is proportional to U x /Ux - Vx /Vx .

ia It should be noted that this definition corresponds to the Nash
equilibirum analysed by Berglas (1976b) rather than to the strictly
competitive equilibrium discussed by Berglas and Pines (1981). The
reason is that developers explicitly take into account the utilities
offered by other developers rather than viewing the club membership fee

as a parametric price schedule.

10 It should be noted that this discussion (as well as that below) relies on
the absence of generalized altruism in that the type-a utility level in

an alternative club does not depend on the prevailing type-b utility in

the original club configuration. With generalized altruism, by
contrast, the k value in an alternative mixed club would depend on the
club's own v value as well as the v level in the original configuration.
With type-b utilities nonuniform, the profitability of such a club could
not be evaluated by referring to the CM frontier, which presumes
uniformity. It is easy to see, however, that since the terms in the k
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argument that involve fi disappear, the CM and H frontiers are

appropriate for evaluating alternative clubs in the absence of

generalized altruism.

aoT is positive because the b's reach a higher utility than in a homogenous
club in spite of the efficiency loss of joint public consumption. As a

result, x to + C/n must exceed consumption in a homogeneous club, which

equals I
b

. But since x to
I
b - P + T, it follows that T > 0.

21To analyse equilibrium, consider the mixed club problem based on (6) and

(7) without the constraint o = 9. This problem is different from the PM

problem in that the utility level of individuals not accommodated in

mixed clubs is not considered. It is easy to show that the zero-profit
solution to the mixed-club developer's problem with o free (under which

(21) equals zero) is the same as the solution to this modified planning
problem (for given v). Let a new utility frontier (denoted MM) show the

u value for this problem at each v. Suppose for the moment that the MM
frontier lies everywhere above the CM frontier (indicating that the
optimal o ^ 9) and that the CM frontier passes to the northeast of NR

.

It is clear that for mixed clubs to exist in a free-o equilibrium, the
utility pair they offer must lie on the MM frontier. Moreover, the

individuals excluded from mixed clubs must reach the same utility as

mixed-club residents in equilibrium. However, since homogenenous-club
utilities must equal the NR values, only two MM points are candidates
for equilibrium. The MM point with v = vNR is an equilibrium candidate
when mixed clubs have o less than 9, and the MM point with u = uNR is an
equilibrium candidate when mixed clubs have o greater than 9 (it can be

shown that these points correspond to PM solutions from the general
planning problem). Suppose than o < 9 holds along the MM frontier to

the northeast of NR, so that the v = vNR point is the only equilibrium
candidate. If this point is not Pareto-dominated by any other MM point
to the northeast of NR, then it is the equilibrium. However, if Pareto-
superior MM points exist (a possibility given that the MM frontier may
have upward-sloping segments), then developers can form viable and
profitable alternative clubs with v > vNR . Since homogeneous clubs
cannot offer this high a utility, the equal-utility requirement of
equilibrium is violated and equilibrium does not exist. Note that
existence would be guaranteed if the MM frontier were to touch the CM
frontier to the northeast of NR. In this case (where the optimal o

equals 9), the associated CM configuration is the equilibrium. This
discussion can be extended to handle the cases where the optimal o

exceeds 9 or where the CM frontier passes below NR.
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